3.3.59 \(\int \tanh (x) (a+b \tanh ^4(x))^{3/2} \, dx\) [259]

3.3.59.1 Optimal result
3.3.59.2 Mathematica [A] (verified)
3.3.59.3 Rubi [A] (verified)
3.3.59.4 Maple [C] (verified)
3.3.59.5 Fricas [B] (verification not implemented)
3.3.59.6 Sympy [F]
3.3.59.7 Maxima [F]
3.3.59.8 Giac [F]
3.3.59.9 Mupad [F(-1)]

3.3.59.1 Optimal result

Integrand size = 15, antiderivative size = 124 \[ \int \tanh (x) \left (a+b \tanh ^4(x)\right )^{3/2} \, dx=-\frac {1}{4} \sqrt {b} (3 a+2 b) \text {arctanh}\left (\frac {\sqrt {b} \tanh ^2(x)}{\sqrt {a+b \tanh ^4(x)}}\right )+\frac {1}{2} (a+b)^{3/2} \text {arctanh}\left (\frac {a+b \tanh ^2(x)}{\sqrt {a+b} \sqrt {a+b \tanh ^4(x)}}\right )-\frac {1}{4} \left (2 (a+b)+b \tanh ^2(x)\right ) \sqrt {a+b \tanh ^4(x)}-\frac {1}{6} \left (a+b \tanh ^4(x)\right )^{3/2} \]

output
1/2*(a+b)^(3/2)*arctanh((a+b*tanh(x)^2)/(a+b)^(1/2)/(a+b*tanh(x)^4)^(1/2)) 
-1/4*(3*a+2*b)*arctanh(b^(1/2)*tanh(x)^2/(a+b*tanh(x)^4)^(1/2))*b^(1/2)-1/ 
4*(a+b*tanh(x)^4)^(1/2)*(2*a+2*b+b*tanh(x)^2)-1/6*(a+b*tanh(x)^4)^(3/2)
 
3.3.59.2 Mathematica [A] (verified)

Time = 4.55 (sec) , antiderivative size = 166, normalized size of antiderivative = 1.34 \[ \int \tanh (x) \left (a+b \tanh ^4(x)\right )^{3/2} \, dx=\frac {1}{12} \left (-6 \sqrt {b} (a+b) \text {arctanh}\left (\frac {\sqrt {b} \tanh ^2(x)}{\sqrt {a+b \tanh ^4(x)}}\right )+6 (a+b)^{3/2} \text {arctanh}\left (\frac {a+b \tanh ^2(x)}{\sqrt {a+b} \sqrt {a+b \tanh ^4(x)}}\right )-\sqrt {a+b \tanh ^4(x)} \left (8 a+6 b+3 b \tanh ^2(x)+2 b \tanh ^4(x)\right )-\frac {3 \sqrt {a} \sqrt {b} \text {arcsinh}\left (\frac {\sqrt {b} \tanh ^2(x)}{\sqrt {a}}\right ) \sqrt {a+b \tanh ^4(x)}}{\sqrt {1+\frac {b \tanh ^4(x)}{a}}}\right ) \]

input
Integrate[Tanh[x]*(a + b*Tanh[x]^4)^(3/2),x]
 
output
(-6*Sqrt[b]*(a + b)*ArcTanh[(Sqrt[b]*Tanh[x]^2)/Sqrt[a + b*Tanh[x]^4]] + 6 
*(a + b)^(3/2)*ArcTanh[(a + b*Tanh[x]^2)/(Sqrt[a + b]*Sqrt[a + b*Tanh[x]^4 
])] - Sqrt[a + b*Tanh[x]^4]*(8*a + 6*b + 3*b*Tanh[x]^2 + 2*b*Tanh[x]^4) - 
(3*Sqrt[a]*Sqrt[b]*ArcSinh[(Sqrt[b]*Tanh[x]^2)/Sqrt[a]]*Sqrt[a + b*Tanh[x] 
^4])/Sqrt[1 + (b*Tanh[x]^4)/a])/12
 
3.3.59.3 Rubi [A] (verified)

Time = 0.40 (sec) , antiderivative size = 132, normalized size of antiderivative = 1.06, number of steps used = 15, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.933, Rules used = {3042, 26, 4153, 26, 1577, 493, 25, 682, 27, 719, 224, 219, 488, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \tanh (x) \left (a+b \tanh ^4(x)\right )^{3/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int -i \tan (i x) \left (a+b \tan (i x)^4\right )^{3/2}dx\)

\(\Big \downarrow \) 26

\(\displaystyle -i \int \tan (i x) \left (b \tan (i x)^4+a\right )^{3/2}dx\)

\(\Big \downarrow \) 4153

\(\displaystyle -i \int \frac {i \tanh (x) \left (b \tanh ^4(x)+a\right )^{3/2}}{1-\tanh ^2(x)}d\tanh (x)\)

\(\Big \downarrow \) 26

\(\displaystyle \int \frac {\tanh (x) \left (a+b \tanh ^4(x)\right )^{3/2}}{1-\tanh ^2(x)}d\tanh (x)\)

\(\Big \downarrow \) 1577

\(\displaystyle \frac {1}{2} \int \frac {\left (b \tanh ^4(x)+a\right )^{3/2}}{1-\tanh ^2(x)}d\tanh ^2(x)\)

\(\Big \downarrow \) 493

\(\displaystyle \frac {1}{2} \left (-\int -\frac {\left (b \tanh ^2(x)+a\right ) \sqrt {b \tanh ^4(x)+a}}{1-\tanh ^2(x)}d\tanh ^2(x)-\frac {1}{3} \left (a+b \tanh ^4(x)\right )^{3/2}\right )\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {1}{2} \left (\int \frac {\left (b \tanh ^2(x)+a\right ) \sqrt {b \tanh ^4(x)+a}}{1-\tanh ^2(x)}d\tanh ^2(x)-\frac {1}{3} \left (a+b \tanh ^4(x)\right )^{3/2}\right )\)

\(\Big \downarrow \) 682

\(\displaystyle \frac {1}{2} \left (\frac {\int \frac {b \left (b (3 a+2 b) \tanh ^2(x)+a (2 a+b)\right )}{\left (1-\tanh ^2(x)\right ) \sqrt {b \tanh ^4(x)+a}}d\tanh ^2(x)}{2 b}-\frac {1}{3} \left (a+b \tanh ^4(x)\right )^{3/2}-\frac {1}{2} \left (2 (a+b)+b \tanh ^2(x)\right ) \sqrt {a+b \tanh ^4(x)}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{2} \left (\frac {1}{2} \int \frac {b (3 a+2 b) \tanh ^2(x)+a (2 a+b)}{\left (1-\tanh ^2(x)\right ) \sqrt {b \tanh ^4(x)+a}}d\tanh ^2(x)-\frac {1}{3} \left (a+b \tanh ^4(x)\right )^{3/2}-\frac {1}{2} \left (2 (a+b)+b \tanh ^2(x)\right ) \sqrt {a+b \tanh ^4(x)}\right )\)

\(\Big \downarrow \) 719

\(\displaystyle \frac {1}{2} \left (\frac {1}{2} \left (2 (a+b)^2 \int \frac {1}{\left (1-\tanh ^2(x)\right ) \sqrt {b \tanh ^4(x)+a}}d\tanh ^2(x)-b (3 a+2 b) \int \frac {1}{\sqrt {b \tanh ^4(x)+a}}d\tanh ^2(x)\right )-\frac {1}{3} \left (a+b \tanh ^4(x)\right )^{3/2}-\frac {1}{2} \left (2 (a+b)+b \tanh ^2(x)\right ) \sqrt {a+b \tanh ^4(x)}\right )\)

\(\Big \downarrow \) 224

\(\displaystyle \frac {1}{2} \left (\frac {1}{2} \left (2 (a+b)^2 \int \frac {1}{\left (1-\tanh ^2(x)\right ) \sqrt {b \tanh ^4(x)+a}}d\tanh ^2(x)-b (3 a+2 b) \int \frac {1}{1-b \tanh ^4(x)}d\frac {\tanh ^2(x)}{\sqrt {b \tanh ^4(x)+a}}\right )-\frac {1}{3} \left (a+b \tanh ^4(x)\right )^{3/2}-\frac {1}{2} \left (2 (a+b)+b \tanh ^2(x)\right ) \sqrt {a+b \tanh ^4(x)}\right )\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {1}{2} \left (\frac {1}{2} \left (2 (a+b)^2 \int \frac {1}{\left (1-\tanh ^2(x)\right ) \sqrt {b \tanh ^4(x)+a}}d\tanh ^2(x)-\sqrt {b} (3 a+2 b) \text {arctanh}\left (\frac {\sqrt {b} \tanh ^2(x)}{\sqrt {a+b \tanh ^4(x)}}\right )\right )-\frac {1}{3} \left (a+b \tanh ^4(x)\right )^{3/2}-\frac {1}{2} \left (2 (a+b)+b \tanh ^2(x)\right ) \sqrt {a+b \tanh ^4(x)}\right )\)

\(\Big \downarrow \) 488

\(\displaystyle \frac {1}{2} \left (\frac {1}{2} \left (-2 (a+b)^2 \int \frac {1}{-\tanh ^4(x)+a+b}d\frac {-b \tanh ^2(x)-a}{\sqrt {b \tanh ^4(x)+a}}-\sqrt {b} (3 a+2 b) \text {arctanh}\left (\frac {\sqrt {b} \tanh ^2(x)}{\sqrt {a+b \tanh ^4(x)}}\right )\right )-\frac {1}{3} \left (a+b \tanh ^4(x)\right )^{3/2}-\frac {1}{2} \left (2 (a+b)+b \tanh ^2(x)\right ) \sqrt {a+b \tanh ^4(x)}\right )\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {1}{2} \left (\frac {1}{2} \left (-2 (a+b)^{3/2} \text {arctanh}\left (\frac {-a-b \tanh ^2(x)}{\sqrt {a+b} \sqrt {a+b \tanh ^4(x)}}\right )-\sqrt {b} (3 a+2 b) \text {arctanh}\left (\frac {\sqrt {b} \tanh ^2(x)}{\sqrt {a+b \tanh ^4(x)}}\right )\right )-\frac {1}{3} \left (a+b \tanh ^4(x)\right )^{3/2}-\frac {1}{2} \left (2 (a+b)+b \tanh ^2(x)\right ) \sqrt {a+b \tanh ^4(x)}\right )\)

input
Int[Tanh[x]*(a + b*Tanh[x]^4)^(3/2),x]
 
output
((-(Sqrt[b]*(3*a + 2*b)*ArcTanh[(Sqrt[b]*Tanh[x]^2)/Sqrt[a + b*Tanh[x]^4]] 
) - 2*(a + b)^(3/2)*ArcTanh[(-a - b*Tanh[x]^2)/(Sqrt[a + b]*Sqrt[a + b*Tan 
h[x]^4])])/2 - ((2*(a + b) + b*Tanh[x]^2)*Sqrt[a + b*Tanh[x]^4])/2 - (a + 
b*Tanh[x]^4)^(3/2)/3)/2
 

3.3.59.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 26
Int[(Complex[0, a_])*(Fx_), x_Symbol] :> Simp[(Complex[Identity[0], a])   I 
nt[Fx, x], x] /; FreeQ[a, x] && EqQ[a^2, 1]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 224
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], 
x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b}, x] &&  !GtQ[a, 0]
 

rule 488
Int[1/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^2]), x_Symbol] :> -Subst[ 
Int[1/(b*c^2 + a*d^2 - x^2), x], x, (a*d - b*c*x)/Sqrt[a + b*x^2]] /; FreeQ 
[{a, b, c, d}, x]
 

rule 493
Int[((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[ 
(c + d*x)^(n + 1)*((a + b*x^2)^p/(d*(n + 2*p + 1))), x] + Simp[2*(p/(d*(n + 
 2*p + 1)))   Int[(c + d*x)^n*(a + b*x^2)^(p - 1)*(a*d - b*c*x), x], x] /; 
FreeQ[{a, b, c, d, n}, x] && GtQ[p, 0] && NeQ[n + 2*p + 1, 0] && ( !Rationa 
lQ[n] || LtQ[n, 1]) &&  !ILtQ[n + 2*p, 0] && IntQuadraticQ[a, 0, b, c, d, n 
, p, x]
 

rule 682
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p 
_.), x_Symbol] :> Simp[(d + e*x)^(m + 1)*(c*e*f*(m + 2*p + 2) - g*c*d*(2*p 
+ 1) + g*c*e*(m + 2*p + 1)*x)*((a + c*x^2)^p/(c*e^2*(m + 2*p + 1)*(m + 2*p 
+ 2))), x] + Simp[2*(p/(c*e^2*(m + 2*p + 1)*(m + 2*p + 2)))   Int[(d + e*x) 
^m*(a + c*x^2)^(p - 1)*Simp[f*a*c*e^2*(m + 2*p + 2) + a*c*d*e*g*m - (c^2*f* 
d*e*(m + 2*p + 2) - g*(c^2*d^2*(2*p + 1) + a*c*e^2*(m + 2*p + 1)))*x, x], x 
], x] /; FreeQ[{a, c, d, e, f, g, m}, x] && GtQ[p, 0] && (IntegerQ[p] ||  ! 
RationalQ[m] || (GeQ[m, -1] && LtQ[m, 0])) &&  !ILtQ[m + 2*p, 0] && (Intege 
rQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])
 

rule 719
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p 
_.), x_Symbol] :> Simp[g/e   Int[(d + e*x)^(m + 1)*(a + c*x^2)^p, x], x] + 
Simp[(e*f - d*g)/e   Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, 
d, e, f, g, m, p}, x] &&  !IGtQ[m, 0]
 

rule 1577
Int[(x_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (c_.)*(x_)^4)^(p_.), x_Symbol] 
 :> Simp[1/2   Subst[Int[(d + e*x)^q*(a + c*x^2)^p, x], x, x^2], x] /; Free 
Q[{a, c, d, e, p, q}, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4153
Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + 
(f_.)*(x_)])^(n_))^(p_.), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], 
 x]}, Simp[c*(ff/f)   Subst[Int[(d*ff*(x/c))^m*((a + b*(ff*x)^n)^p/(c^2 + f 
f^2*x^2)), x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ[{a, b, c, d, e, f, m, 
n, p}, x] && (IGtQ[p, 0] || EqQ[n, 2] || EqQ[n, 4] || (IntegerQ[p] && Ratio 
nalQ[n]))
 
3.3.59.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 4 vs. order 3.

Time = 0.90 (sec) , antiderivative size = 620, normalized size of antiderivative = 5.00

method result size
derivativedivides \(-\frac {b \tanh \left (x \right )^{4} \sqrt {a +b \tanh \left (x \right )^{4}}}{6}-\frac {b \tanh \left (x \right )^{2} \sqrt {a +b \tanh \left (x \right )^{4}}}{4}-\frac {2 \sqrt {a +b \tanh \left (x \right )^{4}}\, a}{3}-\frac {b \sqrt {a +b \tanh \left (x \right )^{4}}}{2}-\frac {\left (\frac {5}{3} a b +b^{2}\right ) \sqrt {1-\frac {i \sqrt {b}\, \tanh \left (x \right )^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, \tanh \left (x \right )^{2}}{\sqrt {a}}}\, \operatorname {EllipticF}\left (\tanh \left (x \right ) \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )}{2 \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {a +b \tanh \left (x \right )^{4}}}-\frac {3 \ln \left (2 \sqrt {b}\, \tanh \left (x \right )^{2}+2 \sqrt {a +b \tanh \left (x \right )^{4}}\right ) \sqrt {b}\, a}{4}-\frac {\ln \left (2 \sqrt {b}\, \tanh \left (x \right )^{2}+2 \sqrt {a +b \tanh \left (x \right )^{4}}\right ) b^{\frac {3}{2}}}{2}-\frac {i \left (-\frac {7}{5} a b -b^{2}\right ) \sqrt {a}\, \sqrt {1-\frac {i \sqrt {b}\, \tanh \left (x \right )^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, \tanh \left (x \right )^{2}}{\sqrt {a}}}\, \left (\operatorname {EllipticF}\left (\tanh \left (x \right ) \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )-\operatorname {EllipticE}\left (\tanh \left (x \right ) \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )\right )}{2 \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {a +b \tanh \left (x \right )^{4}}\, \sqrt {b}}+\frac {a^{2} \operatorname {arctanh}\left (\frac {2 b \tanh \left (x \right )^{2}+2 a}{2 \sqrt {a +b}\, \sqrt {a +b \tanh \left (x \right )^{4}}}\right )}{2 \sqrt {a +b}}+\frac {a b \,\operatorname {arctanh}\left (\frac {2 b \tanh \left (x \right )^{2}+2 a}{2 \sqrt {a +b}\, \sqrt {a +b \tanh \left (x \right )^{4}}}\right )}{\sqrt {a +b}}+\frac {b^{2} \operatorname {arctanh}\left (\frac {2 b \tanh \left (x \right )^{2}+2 a}{2 \sqrt {a +b}\, \sqrt {a +b \tanh \left (x \right )^{4}}}\right )}{2 \sqrt {a +b}}-\frac {\left (-\frac {5}{3} a b -b^{2}\right ) \sqrt {1-\frac {i \sqrt {b}\, \tanh \left (x \right )^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, \tanh \left (x \right )^{2}}{\sqrt {a}}}\, \operatorname {EllipticF}\left (\tanh \left (x \right ) \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )}{2 \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {a +b \tanh \left (x \right )^{4}}}-\frac {i \left (\frac {7}{5} a b +b^{2}\right ) \sqrt {a}\, \sqrt {1-\frac {i \sqrt {b}\, \tanh \left (x \right )^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, \tanh \left (x \right )^{2}}{\sqrt {a}}}\, \left (\operatorname {EllipticF}\left (\tanh \left (x \right ) \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )-\operatorname {EllipticE}\left (\tanh \left (x \right ) \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )\right )}{2 \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {a +b \tanh \left (x \right )^{4}}\, \sqrt {b}}\) \(620\)
default \(-\frac {b \tanh \left (x \right )^{4} \sqrt {a +b \tanh \left (x \right )^{4}}}{6}-\frac {b \tanh \left (x \right )^{2} \sqrt {a +b \tanh \left (x \right )^{4}}}{4}-\frac {2 \sqrt {a +b \tanh \left (x \right )^{4}}\, a}{3}-\frac {b \sqrt {a +b \tanh \left (x \right )^{4}}}{2}-\frac {\left (\frac {5}{3} a b +b^{2}\right ) \sqrt {1-\frac {i \sqrt {b}\, \tanh \left (x \right )^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, \tanh \left (x \right )^{2}}{\sqrt {a}}}\, \operatorname {EllipticF}\left (\tanh \left (x \right ) \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )}{2 \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {a +b \tanh \left (x \right )^{4}}}-\frac {3 \ln \left (2 \sqrt {b}\, \tanh \left (x \right )^{2}+2 \sqrt {a +b \tanh \left (x \right )^{4}}\right ) \sqrt {b}\, a}{4}-\frac {\ln \left (2 \sqrt {b}\, \tanh \left (x \right )^{2}+2 \sqrt {a +b \tanh \left (x \right )^{4}}\right ) b^{\frac {3}{2}}}{2}-\frac {i \left (-\frac {7}{5} a b -b^{2}\right ) \sqrt {a}\, \sqrt {1-\frac {i \sqrt {b}\, \tanh \left (x \right )^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, \tanh \left (x \right )^{2}}{\sqrt {a}}}\, \left (\operatorname {EllipticF}\left (\tanh \left (x \right ) \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )-\operatorname {EllipticE}\left (\tanh \left (x \right ) \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )\right )}{2 \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {a +b \tanh \left (x \right )^{4}}\, \sqrt {b}}+\frac {a^{2} \operatorname {arctanh}\left (\frac {2 b \tanh \left (x \right )^{2}+2 a}{2 \sqrt {a +b}\, \sqrt {a +b \tanh \left (x \right )^{4}}}\right )}{2 \sqrt {a +b}}+\frac {a b \,\operatorname {arctanh}\left (\frac {2 b \tanh \left (x \right )^{2}+2 a}{2 \sqrt {a +b}\, \sqrt {a +b \tanh \left (x \right )^{4}}}\right )}{\sqrt {a +b}}+\frac {b^{2} \operatorname {arctanh}\left (\frac {2 b \tanh \left (x \right )^{2}+2 a}{2 \sqrt {a +b}\, \sqrt {a +b \tanh \left (x \right )^{4}}}\right )}{2 \sqrt {a +b}}-\frac {\left (-\frac {5}{3} a b -b^{2}\right ) \sqrt {1-\frac {i \sqrt {b}\, \tanh \left (x \right )^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, \tanh \left (x \right )^{2}}{\sqrt {a}}}\, \operatorname {EllipticF}\left (\tanh \left (x \right ) \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )}{2 \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {a +b \tanh \left (x \right )^{4}}}-\frac {i \left (\frac {7}{5} a b +b^{2}\right ) \sqrt {a}\, \sqrt {1-\frac {i \sqrt {b}\, \tanh \left (x \right )^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, \tanh \left (x \right )^{2}}{\sqrt {a}}}\, \left (\operatorname {EllipticF}\left (\tanh \left (x \right ) \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )-\operatorname {EllipticE}\left (\tanh \left (x \right ) \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )\right )}{2 \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {a +b \tanh \left (x \right )^{4}}\, \sqrt {b}}\) \(620\)

input
int(tanh(x)*(a+b*tanh(x)^4)^(3/2),x,method=_RETURNVERBOSE)
 
output
-1/6*b*tanh(x)^4*(a+b*tanh(x)^4)^(1/2)-1/4*b*tanh(x)^2*(a+b*tanh(x)^4)^(1/ 
2)-2/3*(a+b*tanh(x)^4)^(1/2)*a-1/2*b*(a+b*tanh(x)^4)^(1/2)-1/2*(5/3*a*b+b^ 
2)/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(1/2)*b^(1/2)*tanh(x)^2)^(1/2)*(1+I/a^ 
(1/2)*b^(1/2)*tanh(x)^2)^(1/2)/(a+b*tanh(x)^4)^(1/2)*EllipticF(tanh(x)*(I/ 
a^(1/2)*b^(1/2))^(1/2),I)-3/4*ln(2*b^(1/2)*tanh(x)^2+2*(a+b*tanh(x)^4)^(1/ 
2))*b^(1/2)*a-1/2*ln(2*b^(1/2)*tanh(x)^2+2*(a+b*tanh(x)^4)^(1/2))*b^(3/2)- 
1/2*I*(-7/5*a*b-b^2)*a^(1/2)/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(1/2)*b^(1/2 
)*tanh(x)^2)^(1/2)*(1+I/a^(1/2)*b^(1/2)*tanh(x)^2)^(1/2)/(a+b*tanh(x)^4)^( 
1/2)/b^(1/2)*(EllipticF(tanh(x)*(I/a^(1/2)*b^(1/2))^(1/2),I)-EllipticE(tan 
h(x)*(I/a^(1/2)*b^(1/2))^(1/2),I))+1/2*a^2/(a+b)^(1/2)*arctanh(1/2*(2*b*ta 
nh(x)^2+2*a)/(a+b)^(1/2)/(a+b*tanh(x)^4)^(1/2))+a*b/(a+b)^(1/2)*arctanh(1/ 
2*(2*b*tanh(x)^2+2*a)/(a+b)^(1/2)/(a+b*tanh(x)^4)^(1/2))+1/2*b^2/(a+b)^(1/ 
2)*arctanh(1/2*(2*b*tanh(x)^2+2*a)/(a+b)^(1/2)/(a+b*tanh(x)^4)^(1/2))-1/2* 
(-5/3*a*b-b^2)/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(1/2)*b^(1/2)*tanh(x)^2)^( 
1/2)*(1+I/a^(1/2)*b^(1/2)*tanh(x)^2)^(1/2)/(a+b*tanh(x)^4)^(1/2)*EllipticF 
(tanh(x)*(I/a^(1/2)*b^(1/2))^(1/2),I)-1/2*I*(7/5*a*b+b^2)*a^(1/2)/(I/a^(1/ 
2)*b^(1/2))^(1/2)*(1-I/a^(1/2)*b^(1/2)*tanh(x)^2)^(1/2)*(1+I/a^(1/2)*b^(1/ 
2)*tanh(x)^2)^(1/2)/(a+b*tanh(x)^4)^(1/2)/b^(1/2)*(EllipticF(tanh(x)*(I/a^ 
(1/2)*b^(1/2))^(1/2),I)-EllipticE(tanh(x)*(I/a^(1/2)*b^(1/2))^(1/2),I))
 
3.3.59.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2646 vs. \(2 (101) = 202\).

Time = 0.55 (sec) , antiderivative size = 11528, normalized size of antiderivative = 92.97 \[ \int \tanh (x) \left (a+b \tanh ^4(x)\right )^{3/2} \, dx=\text {Too large to display} \]

input
integrate(tanh(x)*(a+b*tanh(x)^4)^(3/2),x, algorithm="fricas")
 
output
Too large to include
 
3.3.59.6 Sympy [F]

\[ \int \tanh (x) \left (a+b \tanh ^4(x)\right )^{3/2} \, dx=\int \left (a + b \tanh ^{4}{\left (x \right )}\right )^{\frac {3}{2}} \tanh {\left (x \right )}\, dx \]

input
integrate(tanh(x)*(a+b*tanh(x)**4)**(3/2),x)
 
output
Integral((a + b*tanh(x)**4)**(3/2)*tanh(x), x)
 
3.3.59.7 Maxima [F]

\[ \int \tanh (x) \left (a+b \tanh ^4(x)\right )^{3/2} \, dx=\int { {\left (b \tanh \left (x\right )^{4} + a\right )}^{\frac {3}{2}} \tanh \left (x\right ) \,d x } \]

input
integrate(tanh(x)*(a+b*tanh(x)^4)^(3/2),x, algorithm="maxima")
 
output
integrate((b*tanh(x)^4 + a)^(3/2)*tanh(x), x)
 
3.3.59.8 Giac [F]

\[ \int \tanh (x) \left (a+b \tanh ^4(x)\right )^{3/2} \, dx=\int { {\left (b \tanh \left (x\right )^{4} + a\right )}^{\frac {3}{2}} \tanh \left (x\right ) \,d x } \]

input
integrate(tanh(x)*(a+b*tanh(x)^4)^(3/2),x, algorithm="giac")
 
output
integrate((b*tanh(x)^4 + a)^(3/2)*tanh(x), x)
 
3.3.59.9 Mupad [F(-1)]

Timed out. \[ \int \tanh (x) \left (a+b \tanh ^4(x)\right )^{3/2} \, dx=\int \mathrm {tanh}\left (x\right )\,{\left (b\,{\mathrm {tanh}\left (x\right )}^4+a\right )}^{3/2} \,d x \]

input
int(tanh(x)*(a + b*tanh(x)^4)^(3/2),x)
 
output
int(tanh(x)*(a + b*tanh(x)^4)^(3/2), x)